

Find an equation in standard form of the parabola passing through the points. Then approximate the maximum or minimum.

1. (1, -1), (2, -5), (3, -7)	2. (1, -4), (2, -3), (3, -4)
3. (2, -8), (3, -8), (6, 4)	4. (-1, -12), (2, -6), (4, -12)
5. (-1, -12), (0, -6), (3, 0)	6. (-2, -4), (1, -1), (3, 11)

x	f(x)
- 1	7
1	5
3	11

10	x	f(x)
	- 2	-7
	0	1
	2	1

13. The table shows the number n of tickets to a school play sold t days after the tickets went on sale, for several days.a. Find a quadratic model for the data.

b. Use the model to find the number of tickets sold on day 7.

c. When was the greatest number of tickets sold?

, t T	Number of ickets Sold, <i>n</i>
	32
	64
	74
	<i>r, t</i> T

- **14.** The table gives the number of pairs of skis sold in a sporting goods store for several months last year.
 - **a.** Find a quadratic model for the data, using January as month 1, February as month 2, and so on.
 - **b.** Use the model to predict the number of pairs of skis sold in November.
 - c. In what month were the fewest skis sold?

Number of Pairs of Skis Sold, s
82
42
18